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Beam Propagation Method Applied to a Step
Discontinuity in Dielectric Planar Waveguides

LOTFI RABEH GOMAA

Abstract —The power transmission and loss at an abrupt discontinuity
in planar guides are calculated numerically using the beam propagation
method (BPM) for the TE modes. Discontinuities include changes in core
thickness and refractive index. Symmetric and asymmetric waveguides are
considered. Comparison of results with those obtained by other techniques
shows a general agreement.

1. INTRODUCTION

The power transmitted and lost at a junction between two
dissimilar waveguides can be evaluated by a variational method
[1] and by mode matching [2], Wiener-Hopf [3], and residue
calculus [4] techniques, as well as by the Green’s function [5]
method. All of these techniques are relatively complicated and
require the solution of an infinite set of equations, or the expan-
sion of the field in terms of an infinite set of orthogonal func-
tions or polynomials which are oscillatory. Hence care must be
taken to guarantee thé stability and the convergence of the
solution. In many practical sitnations the reflected ficld can be
neglected when the relative change in the refractive index is
small. In such cases we can use the BPM [6], [7] to evaluate the
transmitted and the scattered power at a step discontinuity. In
the BPM, the total propagating electric field E,(x,Az) is calcu-
lated at small intervals in the direction of propagation z using
the discrete Fourier transform [6], which can be calculated by the
fast Fourier transform (FFT) algorithm. An iterative calculation
[6] allows an approximate evaluation of the total field at Az,
knowing the field at z =0: '

Ey(x,Az) =P-Q-P{E,(x,0)} 4))

where P and Q are the two operators:
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Q = exp[ — ilzko(n(x) - n,)]. 3)
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Here, k, is the free-space wavenumber, n, is the substrate index
of refraction, and v is the transverse Laplacian in the x
direction. The error introduced in the solution (1) is of the order
(Az)*; hence a small increment in the direction of propagation is
necessary to obtain accurate results {7]. One of the main ad-
vantages of the BPM is that it gives detailed information about
the total propagating field and its Fourier transform at any plane
z. The discrete and the continuous parts of the spectrum of the
propagating field are considered; this gives a Clear insight into
the evolution and the behavior of the total field at any point in
any plane transverse to the direction of propagation. It is
worthwhile to note that the modal content of the propagating
field E,(x) is easily obtained by expanding the total field in
terms of the eigenmodes of the waveguiding structure [8]:

E(x) = D0 (0)+ @ )

where e, (x) is the transverse field distribution of the nth
guided mode and # is the Fourier integral representing the
radiation field. The transmission coefficient ¢, can be calculated
by direct scalar product of (4) with  the complex conjugate

S (X):
¥ f_ E(x)e (x)dx
n= fuweyn(x)| dx

The radiated power is the difference between the guided power
(knowing ¢, from (5)) and the incident. power.

(5)

II. RESULTS

We consider as a first example'the symmetric step shown in
Fig. 1. It was studied previously by Marcuse [9] using an ap-
proximate mode matching technique; Ittipiboon ef al. [4] studied
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Fig. 2. Asymmetric step discontinuity. —— rigorous mode matching tech-

nique: esse BPM.

the same case using the residue calculus, and recently Nishimura
et al. [10] used an approximate integral equation to calculate the
relative radiated power P, (the ratio of the power lost by radia-
tion to the incident power). Fig. 1 shows the results of the BPM
(solid dots) presented in this letter and the three previous tech-
niques. The variation of P, is shown as a function of k,d; when
the ratio d, /d,; is kept constant at 0.5; the field incident on the
step from the right is the fundamental TE mode. As a second
example we consider the asymmetric step studied rigorously by
Boyd et al. [11] using a discretized representation of the radiation
field. Fig. 2 shows the results of this method and those obtained
by the BPM (solid dots) in evaluating the magnitude of the
transmission coefficient |z,,| as a function of kyd, (d,/d, =035
and the wavelength is 0.6328 pm). The comparison is fairly
favorable because the relative forward radiated power is much
higher than the backscattered radiated power for a step ratio
d, /d, = 0.5, as pointed out by Marcuse [9], so that the reflected
field can be neglected; hence the losses are mainly due to forward
scattering,

III. CONCLUSIONS

To the author’s knowledge, the BPM applied to step discon-
tinuities is presented for the first time in this paper. The applica-
bility of this method to symmetric and asymmetric steps is
checked and the results are compared with those of four other
methods.

We think that the BPM is efficient for analyzing a wide class of
step discontinuities, and perhaps it will be the most convenient
method for dealing with step discontinuities between guides of
arbitrary refractive index distribution, for example graded or
buried waveguides.
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Low-Phase-Noise Gunn Diode Oscillator Design

ROBERT A. STRANGEWAY, MEMBER, IEE, T. KORYU ISHII,
SENIOR MEMBER, IEEE, AND JAMES S. HYDE

Abstract —Low-phase-noise Gunn diode oscillators with an operating
frequency of 35 GHz and an output power of 100 mW are designed,
fabricated, and tested. The phase noise is —132 dBc/Hz to —125
dBc/Hz at 100 kHz offset from the center frequency. This low phase
noise is obtained by closely coupling the stabilizing transmission cavity
resonator and the Gunn diode oscillator coaxial line while loosely coupling
the transmission cavity to the output waveguide following van der Heyden’s
approach.

I. INTRODUCTION

A stable low-phase-noise microwave oscillator is always useful
as a signal source for synchronized communications and scien-
tific precision measurements. In the past, various approaches
have been tried to reduce the phase noise of various types of
microwave oscillators [1]-[10]. According to published references,
the phase noise of a center frequency of 35 GHz ranges from
—115 to —70 dBc/Hz at an offset frequency of 100 kHz from
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