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Beam Propagation Method Applied to a Step

Discontinuity in Dielectric Planar Waveguides

LOTFI RABEH GOMAA

Abstract —The power transmission and loss at an abrupt discontinuity

in planar guides are calculated numerically using the beam propagation

method (BPM) for the TX modes. Discontinuities include changes in core

thickness and refractive index. Symmetric and asymmetric wavegnides are

considered. Comparison of results with those obtained by other techniques

shows a general. agreement.

I. INTRODUCTION

The power transmitted and lost at a junction between two

dissimilar waveguides can be evaluated by a variational method

[1] and by mode matching [2], Wiener-Hopf [3], and residue

calculus [4] techniques, as well as by the Green’s function [5]

method. All of these techniques are relatively complicated and

require the solution of an infinite ‘set of equations, or the expan-

sion of the field in terms of an infinite set of orthogonal func-

tions or polynomials which are oscillatory. Hence care must be

t&ken to guarantee the stability tid the convergence of the

solution. In many practical situations the reflected field can be

neglected when the relative change in the refractive index is

small. In such cases we can use the BPM [6], [7] to evaluate the

transmitted and the scattered power at a step discontinuity. In

the BPM, the total propagating electric field [,(x, Az) is calcu-

lated at small intervals in the direction of propagation z using

the discrete Fourier transform [6], which can be calculated by the

fast Fourier transform (FF’T) algorithm. An iterative calculation

[6] allows an approximate evaluation of the total field at Az,

knowing the field at z = O: ,.

EY(x:Az) =FQ. P{ EY(x,O)} (1)

where P and Q are the two operators:

[

Az 2

P=exp –i~

(v: + k;;)l’2+ kOn, 1 (2)

and

Q=exp[- iAZkO(~(x) -~.)]. (3)
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Fig. 1. Symmetric step discontinuity. —- integral equation method;

– .– .– .– residue cafculus techriique; ---- approximate mode matching

technique; ●000 BPM.

Here, kO is the free-space wavenumber, n$ is the substrate index

of refraction, and- V12 is the transverse Laplacian in the x

direction. ‘The error introduced in the solution (1) is of the order

(A Z)3; hence a small increment in the direction of propagation is

necessary to obtain ?ccurate results [7]. One of the main ad-

vantages of the BPM is hat it gives detailed information about

the total propagating field and its Fourier transform at any plane

z. The discrete and the continuous parts of the spectrum of the

propagating field are considered; this gives a kleai insight into

the evolution and the behavior of the total field at any point in

any plane transverse to the direction of propagation. It is

worthwhile to note that the modal content of the propagating

field EP ( x) is easily obtained by expanding the total field in

terms of the eigenmodes of the waveguiding structure [8]:

EY(x)=~l~eY~(,x+.!% (4)
n

where eY~( x ) is the transverse field distribution of the n th

guided mode and l-% is the Fourier integral representing the

radiation field. The transmission coefficient t. can be calculated

by direct scalar product of (4) with, the complex conjugate

e&(x):

~w ~,(~)e.~.( X) dx

‘“= ‘~m leyn(x)l’~x “
(5)

–cc

The radiated power is the difference between the guided power

(knowing t. from (5)) and the incident power.

II. RESULTS

We consider as a first example’ the symmetric step shown in

Fig. 1. It was studied previously by Marcuse [9] using an ap-

proximate mode matching technique; Ittipiboon et al. [4] studied
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Fig. 2, Asymmetric step discontinuity. — rigorous mode matchmg tech-

nique: ● eoo BPM.

the same case using the residue calculus, and recently Nishimura

et al. [10] used an approximate integral equation to calculate the

relative radiated power P, (the ratio of the power lost by radia-

tion to the incident power). Fig. 1 shows the results of the BPM

(solid dots) presented in this letter and the three previous tech-

niques. The variation of P, is shown as a function of kOdl when

the ratio dz /dl is kept constant at 0.5; the field incident on the

step from the right is the fundamental TE mode. As a second

example we consider the asymmetric step studied rigorously by

Boyd et al. [11] using a discretized representation of the radiation

field. Fig. 2 shows the results of this method and those obtained

by the BPM (solid dots) in evaluating the magnitude of the

transmission coefficient ltn 1as a function of kOdl (dl/d2 = 0.5
and the wavelength is 0.6328 pm). The comparison is fairly

favorable because the relative forward radiated power is much

higher than the backscattered radiated power for a step ratio

dl /dz = 0.5, as pointed out by Marcuse [9], so that the reflected

field can be neglected; hence the losses are mainly due to forward

scattering.

111, CONCLUSIONS

To the author’s knowledge, the BPM applied to step discon-

tinuities is presented for the first time in this paper. The applica-

bility of this method to symmetric and asymmetric steps is

checked and the results are compared with those of four other

methods.

We think that the BPM is efficient for analyzing a wide class of

step discontinuities, and perhaps it will be the most convenient

method for dealing with step discontinuities between guides of

arbitrary refractive index distribution, for example graded or

buried waveguides.
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Low-Phase-Noise Gunn Diode Oscillator Design

ROBERT A. STRANGEWAY, MSMBER, IEEE, T. KORYU ISHII,

SENIOR MEMBER, IEEE, AND JAMES S. HYDE

Abstract —Low-phase-noise Gunn diode oscillators with an operating

frequency of 35 GHz and an output power of 100 mW are designed,

fabricated, aud tested. The phase noise is – 132 dBc/Hz to – 125

dBc/Hz at 100 kHz offset from the center frequency. This low phase

noise is obtained by closely coupling the stabilizing transmission cavity

resonator aud the Gunn diode oscillator coaxial line while loosely coupling

the transmission cavity to the output waveguide following van der Heyden’s

approach.

I. INTRODUCTION

A stable low-phase-noise microwave oscillator is always useful

as a signal source for synchronized communications and scien-

tific precision measurements. In the past, various approaches

have been tried to reduce the phase noise of various types of

microwave oscillators [1]–[10]. According to published references,

the phase noise of a center frequency of 35 GHz ranges from

– 115 to – 70 dBc/Hz at an offset frequency of 100 kHz from
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